精英家教网 > 高中数学 > 题目详情
6.(1)一光线经点P(5,3)被直线l:y=3x+3反射,若反射光线经过点Q(1,1),求入射光线所在直线方程.
(2)已知正方形ABCD一边AB的方程 x+2y+3=0和中心P(1,1),求边BC和AD的方程.
(3)已知椭圆$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦点,那么双曲线的渐近线方程.

分析 (1)先求出Q(1,1)关于直线l:y=3x+3的对称点的坐标C(3,4),再根据点C、点P在入射光线所在的直线上,利用两点式求得入射光线PC所在的直线方程.
(2)利用中心P到边的距离相等,建立方程,即可求边BC和AD的方程.
(3)利用椭圆$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦点,确定m,n的关系,即可求出双曲线的渐近线方程.

解答 解:(1)由题意,设Q(1,1)关于直线l:y=3x+3的对称点的坐标为(a,b),则$\left\{\begin{array}{l}{\frac{b-1}{a-1}•3=-1}\\{\frac{1+b}{2}=3•\frac{1+a}{2}+3}\end{array}\right.$,
∴a=-2,b=2
利用反射定律可得,C(-2,2)在入射光线所在的直线上,
由于点P(5,3)也在入射光线所在的直线上,故入射光线所在的直线方程为$\frac{y-2}{3-2}=\frac{x+2}{5+2}$,即x-7y+16=0;
(2)设BC的方程为2x-y+c=0,则$\frac{|1+2+3|}{\sqrt{5}}$=$\frac{|2-1+c|}{\sqrt{5}}$,∴c=5或-7
∴AD:2x-y+5=0,BC:2x-y-7=0;
(3)∵椭圆$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和双曲线$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦点,
∴3m2-5n2=2m2+3n2
∴m=±2$\sqrt{2}$n,
∴双曲线的渐近线方程y=±$\sqrt{\frac{3{n}^{2}}{2{m}^{2}}}$x=±$\frac{\sqrt{3}}{4}$x.

点评 本题主要考查反射定率、求一个点关于直线的对称点的坐标、用两点式求直线的方程,考查直线方程,考查双曲线、椭圆的方程与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求证:函数f(x)=-2x3-x在R上是单调递减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设双曲线C经过点(2,2),且与$\frac{y^2}{4}$-x2=1具有相同渐近线,则C的方程为$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1;离心率等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$sinα=\frac{m-3}{m+5}$,$cosα=\frac{4-2m}{m+5}$,$α∈(-\frac{π}{2},0)$,则tanα=(  )
A.$-\frac{4}{3}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若点O和点F分别为椭圆3x2+4y2=12的中心和左焦点,点P为椭圆上任意一点,则$\overrightarrow{OP}•\overrightarrow{FP}$最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于无穷数列{Tn},若正整数n0,使得n≥n0(n∈N*)时,有Tn+1>Tn,则称{Tn}为“n0~不减数列”.
(1)设s,t为正整数,且s>t,甲:{xn}为“s~不减数列”,乙:{xn}为“t~不减数列”.
试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数y=f(x)与函数y=-$\frac{1}{x}$+2的图象关于直线y=x对称,数列{an}满足a1=3,an+1=f(an)(n∈N*),如果{an}为“n0~不减数列”,试求n0的最小值;
(3)设yn=$\left\{\begin{array}{l}{f(\frac{4}{3}),(n=1)}\\{(\frac{1}{{2}^{n}}+1)cosnπ,(n≥2,n∈{N}^{*})}\end{array}\right.$,且xn-λyn=2n,是否存在实数λ使得{xn}为“$\frac{1}{2}$f(f($\frac{4}{3}$))~不减数列”?若存在,求出λ的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设P1和P2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的两点,线段P1P2的中点为M,直线P1P2不经过坐标原点O.
(1)若直线P1P2和直线OM的斜率都存在且分别为k1和k2,求证:k1k2=$\frac{b^2}{a^2}$;
(2)若双曲线的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,点P1的坐标为(2,1),直线OM的斜率为$\frac{3}{2}$,求由四点P1、F1、P2、F2所围成四边形P1F1P2F2的面积.

查看答案和解析>>

同步练习册答案