精英家教网 > 高中数学 > 题目详情

如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有什么结论?并给予证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
2
2

(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在正四面体A-BCD中,E、F、G分别是三角形ADC、ABD、BCD的中心,则△EFG在该正四面体各个面上的射影所有可能是图2中的
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′-BCDE,其中A′O=
3

(1)证明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在边长为3的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
3
2
2

(1)证明:DE∥平面BCF;     
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

查看答案和解析>>

同步练习册答案