精英家教网 > 高中数学 > 题目详情

设函数.
(1)研究函数的极值点;
(2)当时,若对任意的,恒有,求的取值范围;
(3)证明:.

(1)详见解析;(2)实数的取值范围是;(3)详见解析.

解析试题分析:(1)先求出函数的导数,对的符号进行分类讨论,即对函数是否存在极值点进行分类讨论,结合函数的单调性或导数符号确定函数的极大值或极小值;(2)利用(1)中的结论,将问题转化为,结合(1)中的结论列不等式解参数的取值范围;(3)在(2)中,令,得到不等式上恒成立,然后令得到,两边同除以得到
,结合放缩法得到,最后;利用累加法即可得到所证明的不等式.
试题解析:(1)
 
 上无极值点 
当p>0时,令的变化情况如下表:

x
(0,)



+
0



极大值

从上表可以看出:当p>0 时,有唯一的极大值点 
(2)当时在处取得极大值
此极大值也是最大值,要使恒成立,只需
,即p的取值范围为[1,+∞
(3)令,由(2)知,
,∴
 

,∴结论成立
另解:设函数,则,令,解得,则
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(1)若恒成立,求实数的值;
(2)若方程有一根为,方程的根为,是否存在实数,使?若存在,求出所有满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在实数集R上定义运算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是减函数,求实数a的取值范围;
(Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与1的大小;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足: 
(Ⅰ)求数列{}的通项公式;
(Ⅱ)在数列中,仅最小,求的取值范围;
(Ⅲ)令函数数列满足,求证:对一切n≥2的正整数都有 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,函数处有极小值,求函数的单调递增区间;
(2)若函数有相同的极大值,且函数在区间上的最大值为,求实数的值(其中是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
⑴求函数的单调区间;
⑵如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案