精英家教网 > 高中数学 > 题目详情
12.若(3-2x)15=a0+a1(x-1)+…+a15(x-1)15,则a1+a2+…+a15=-2.

分析 令x=2可得a0+a1+a2+…+a15=-1;令x=1可得a0=1,即可得出结论.

解答 解:令x=2可得a0+a1+a2+…+a15=-1;
令x=1可得a0=1,
∴a1+a2+…+a15=-2.
故答案为:-2.

点评 本题考查二项展开式,考查赋值法的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若(4$\sqrt{x}$+$\frac{1}{x}}$)n的展开式中各项系数之和为125,则展开式的常数项为48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱)76656
收益y(单位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求预计收益是多少元?
(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201-500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为$\frac{2}{5}$,获二等奖学金的概率均为$\frac{1}{3}$,不获得奖学金的概率均为$\frac{4}{15}$.
(1)在学生甲获得奖学金条件下,求他获得一等奖学金的概率;
(2)已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X的分布列及数学期望
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设在正项数列{an}中,a12+$\frac{{{a}_{2}}^{2}}{{2}^{2}}$+$\frac{{{a}_{3}}^{2}}{{3}^{2}}$+…+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$=4n-3,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2n项和为$\frac{n}{4n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列三角方程:
(1)2sin2x+$\sqrt{3}$cosx+1=0.
(2)3sin2x+8sinxcosx-3cos2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知{x|ax2+bx+c≥0}=[α,β],{x|ax2+(b-1)x+c≥0}=[p,q],若那么α、β、p、q中负数的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数,图象关于原点对称的是(  )
A.f(x)=lgxB.f(x)=3xC.f(x)=lg(x+$\sqrt{1+{x}^{2}}$)D.f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R且x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$=1,则$\sqrt{{x}^{2}+{y}^{2}}$=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}中,a3+a11=8,数列{bn}是等比数列,且b7=a7,则b6•b8的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案