| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
分析 根据式子的意义可得出x,y的范围,令x=sinα,y=sinβ,则$\sqrt{1-{x}^{2}}$=cosα,$\sqrt{1-{y}^{2}}$=cosβ,将原式化简得出α,β的关系,利用同角三角函数的关系得出答案.
解答 解:由式子有意义可得$\left\{\begin{array}{l}{1-{y}^{2}≥0}\\{1-{x}^{2}≥0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$.
由x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$=1可知:$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$.
设x=sinα,y=sinβ,α,β∈[0,$\frac{π}{2}$].
则$\sqrt{1-{x}^{2}}$=cosα,$\sqrt{1-{y}^{2}}$=cosβ,
∴sinαcosβ+cosαsinβ=sin(α+β)=1,
∴α+β=$\frac{π}{2}$.
∴$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{si{n}^{2}α+si{n}^{2}β}$=$\sqrt{si{n}^{2}α+co{s}^{2}α}$=1.
故选:D.
点评 本题考查了三角函数的恒等变换,三角函数的性质,换元法思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1或1 | B. | $-\sqrt{3}$或$\sqrt{3}$ | C. | $-\sqrt{5}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com