精英家教网 > 高中数学 > 题目详情
14.若直线$\sqrt{3}x-2y=0$与圆(x-4)2+y2=r2(r>0)相切,则r=(  )
A.$\frac{48}{7}$B.5C.$\frac{{4\sqrt{21}}}{7}$D.25

分析 由圆的方程求出圆心坐标,直接用圆心到直线的距离等于半径求得答案.

解答 解:由(x-4)2+y2=r2(r>0),可知圆心坐标为(1,0),半径为r,
∵直线$\sqrt{3}x-2y=0$与圆(x-4)2+y2=r2(r>0)相切,
由圆心到直线的距离d=$\frac{4\sqrt{3}}{\sqrt{3+4}}$=$\frac{4\sqrt{21}}{7}$,
可得圆的半径为$\frac{4\sqrt{21}}{7}$.
故选:C.

点评 本题考查了直线和圆的位置关系,考查了点到直线的距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,且过点$({2,\sqrt{3}}))$,直线l1:y=kx+m(m>0)与圆C2:(x-1)2+y2=1相切且与椭圆C1交于A,B两点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,所得函数图象的一个对称中心为(  )
A.$(\frac{7π}{12},0)$B.$(\frac{π}{6},0)$C.$(\frac{5π}{8},0)$D.$(\frac{2π}{3},-3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的是(  )
A.两条直线都和同一个平面平行,则这两条直线平行
B.两条直线没有公共点,则这两条直线平行
C.两条直线都和第三条直线垂直,则这两条直线平行
D.一条直线和一个平面内所有直线没有公共点,则这条直线和这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆${C_1}:{x^2}+{y^2}+2x+2y-2=0$与圆${C_2}:{x^2}+{y^2}-4x-2y+4=0$的公切线有(  )
A..1条B..2条C..3条D..4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分别为B1C1,AA1的中点
(1)求证:AB⊥平面AA1C1C
(2)判断MN与平面ABC1的位置关系,求四面体ABC1M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,
(1)求f(x)在x<0时的解析式;
(2)如果f(x)在[-1,a-2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线l过点(-3,1)且被圆x2+y2=25截得的弦长为8,则直线l的方程是(  )
A.x=-3或4x+3y-15=0B.4x-3y+15=0
C.4x+3y-15=0D.x=-3或4x-3y+15=0

查看答案和解析>>

同步练习册答案