精英家教网 > 高中数学 > 题目详情
(2009•上海模拟)如图,已知一个多面体的平面展开图由一边长为1的正方体和4个边长为1的正三角形组成,则该多面体的体积是
c=
2
6
c=
2
6
分析:根据多面体的平面展开图将其还原为正四棱锥再根据题中的条件求出棱锥的高然后代入棱锥的体积公式求解即可.
解答:解:根据多面体的平面展开图由一边长为1的正方体和4个边长为1的正三角形组成可得该多面体为正四棱锥且底面正方形的边长为1侧棱长也为1
过P向底面做垂线垂足为O则O为正方形ABCD的中心
∵AB=1
∴AO=
2
2

∵PA=1
∴在RT△POA中PO=
PA2-AO2
=
2
2

VP-ABCD
1
3
×(1×1)×
2
2
=
2
6

故答案为
2
6
点评:本题主要考查棱锥体积的求解.解题的关键是要根据多面体的平面展开图将其还原同时还要对正四棱锥性质要熟记于心因为这关系到如何求出棱锥的高!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•上海模拟)在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式2ax2-12x-3>0的解集构成的区间的长度为
6
,求实数a的值;
(2)已知关于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集构成的各区间的长度和超过
π
3
,求实数b的取值范围;
(3)已知关于x的不等式组
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集构成的各区间长度和为6,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),从集合B中任取一元素,则该元素的模为
2
的概率为
2
7
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(1)证明:数列{yn}是等差数列;
(2)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(3)对上述等腰三角形AnBnAn+1添加适当条件,提出一个问题,并做出解答.(根据所提问题及解答的完整程度,分档次给分)

查看答案和解析>>

同步练习册答案