精英家教网 > 高中数学 > 题目详情
16.已知lgx-lg2y=1,则$\frac{x}{y}$的值为(  )
A.2B.5C.10D.20

分析 直接利用对数方程化简求解即可.

解答 解:lgx-lg2y=1,可得lg$\frac{x}{2y}$=1,
可得$\frac{x}{y}$=20.
故选:D.

点评 本题考查对数运算法则的应用,对数方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若$α∈(\frac{π}{2},π)$,且sinα=$\frac{3}{5}$,则cosα=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取8,30,10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中值域是R+的是(  )
A.y=$\sqrt{{x}^{2}-3x+10}$B.y=2x+1(x>0)C.y=$\frac{1}{{x}^{2}}$D.y=2x(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=log3(3+x)+log3(3-x).
(1)求函数f(x)的定义域和值域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)在△ABC中,若a=1,b=$\sqrt{3}$,B=120°.解三角形.
(2)在△ABC中,若a=3$\sqrt{3}$,b=2,C=150°.求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cos(α-β)=$\frac{12}{13}$.cos(α+β)=-$\frac{1}{13}$.求tanα•tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}\right.$,则f(log25)=(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{5}{4}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案