分析 由题意,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{2{b}^{2}}{a}$=4,a2=b2+c2,由此能求出椭圆的方程.
解答 解:由题意得,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{2{b}^{2}}{a}$=4,a2=b2+c2,
∴a=4,b=2$\sqrt{2}$,
∴椭圆C的方程为 $\frac{x^2}{16}+\frac{y^2}{8}=1$;
故答案是:$\frac{x^2}{16}+\frac{y^2}{8}=1$.
点评 本题考查椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{99}{50}$ | D. | $\frac{100}{51}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |AF|+|BF| | B. | |AF|•|BF| | C. | |BF|2+|AF|2 | D. | $\frac{1}{|AF|}+\frac{1}{|BF|}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$ | B. | $[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$ | C. | $(1\;,\;\;\sqrt{2}]$ | D. | $[\frac{1}{2}\;,\;\;\sqrt{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com