精英家教网 > 高中数学 > 题目详情
5.已知△ABC的三边a、b、c成等比数列,a、b、c所对的角依次为A、B、C.则sinB+cosB的取值范围是(  )
A.$(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$B.$[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$C.$(1\;,\;\;\sqrt{2}]$D.$[\frac{1}{2}\;,\;\;\sqrt{2}]$

分析 由△ABC的三边长a、b、c成等比数列,可得b2=ac.可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,利用基本不等式的性质可得B的取值范围,进而可求B+$\frac{π}{4}$的范围,利用两角和的正弦函数公式化简可得sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$),利用正弦函数的图象和性质即可得解.

解答 解:∵△ABC的三边长a、b、c成等比数列,
∴b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,当且仅当a=c时取等号.
∴B∈(0,$\frac{π}{3}$].
∴可得:B+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{7π}{12}$],
∴sinB+cosB=$\sqrt{2}$sin(B+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
故选:C.

点评 本题考查了等比数列的性质、余弦定理、基本不等式的性质、三角函数求值,正弦函数的图象和性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.各项均为正数的等比数列{an}的前n项和为Sn,若S2=2,S6=14,则S8=(  )
A.16B.20C.26D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,由正四棱锥P-ABCD和正四棱柱ABCD-A1B1C1D1所组成的几何体的三视图如图2.
(1)求证:PC⊥平面A1BD;
(2)求点P到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若m⊥α,m⊥β,则α∥β;
②若m?α,n?β,m∥n,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若m、n是异面直线,m?α,m∥β,n?β,n∥α,则α∥β
其中真命题是(  )
A.①和②B.①和③C.①和④D.③和④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,离心率为$\frac{{\sqrt{2}}}{2}$,过点F且与x轴垂直的直线被椭圆截得的线段长为4.则该椭圆的标准方程是$\frac{x^2}{16}+\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.利用基本不等式求最值,下列各式运用正确的是(  )
A.$y=x+\frac{4}{x}≥2\sqrt{x•\frac{4}{x}}=4$
B.$y=sinx+\frac{4}{sinx}≥2\sqrt{sinx•\frac{4}{sinx}}=4\;(x为锐角)$
C.$y=lgx+4{log_x}10≥2\sqrt{lgx•4{{log}_x}10}=4$
D.$y={3^x}+\frac{4}{3^x}≥2\sqrt{{3^x}•\frac{4}{3^x}}=4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,g(x)=b-2f(x),若y=f(x)-g(x)恰有2个零点,则b的取值范围是(  )
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设P={x|x<4},Q={x|-2<x<2},则P?Q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,若(a-c•cosB)sinB=(b-c•cosA)sinA,判断△ABC的形状.

查看答案和解析>>

同步练习册答案