精英家教网 > 高中数学 > 题目详情
15.在△ABC中,若(a-c•cosB)sinB=(b-c•cosA)sinA,判断△ABC的形状.

分析 先通过正弦定理把a,b,c的表达式代入(a-ccosB)sinB=(b-ccosA)sinA中,化简整理,进而可推断三角形是等腰或直角三角形.

解答 解:∵(a-ccosB)sinB=(b-ccosA)sinA,
由正弦定理得(a-ccosB)b=(b-ccosA)a,
∴0=asinB-bsinA,
∵由正弦定理得a=sinA×2R,b=sinB×2R,c=sinC×2R,
代入原式,消去2R得:
cosBsinB-cosAsinA=0,
∴sin2B-sin2A=0,
所以2B=2A(等腰三角形)或者2B+2A=180°(直角三角形),
∴三角形是等腰或直角三角形.

点评 本题主要考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦,利用三角函数的关系来解决问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知△ABC的三边a、b、c成等比数列,a、b、c所对的角依次为A、B、C.则sinB+cosB的取值范围是(  )
A.$(1\;,\;\;1+\frac{{\sqrt{3}}}{2}]$B.$[\frac{1}{2}\;,\;\;1+\frac{{\sqrt{3}}}{2}]$C.$(1\;,\;\;\sqrt{2}]$D.$[\frac{1}{2}\;,\;\;\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若tanα=2,则$\frac{sin(\frac{π}{2}-α)+sin(π+α)}{3cos(2π-α)-sin(π-α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x、y同时满足以下三个条件:①x-y+2≤0;②x≥1;③x+y-7≤0,则$\frac{y}{x}$的取值范围是[$\frac{9}{5}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l经过直线l1:2x-3y+4=0与直线l2:x+2y-5=0的交点P,且与两坐标轴的正半轴围成的三角形的面积是$\frac{9}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设e是自然对数的底,a>0且a≠1,b>0且b≠1,则“loga2>logbe”是“0<a<b<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b是常数,函数f(x)=ax3+bln(x+$\sqrt{1+{x}^{2}}$)+3在(-∞,0)上的最大值为10,则f(x)在(0,+∞)上的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.f(x)=sin2x+$\frac{\sqrt{3}}{2}$sin2x.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=1,△ABC的面积为3$\sqrt{3}$,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={1,2,3},N={2,3,4},则下列式子正确的是(  )
A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}

查看答案和解析>>

同步练习册答案