精英家教网 > 高中数学 > 题目详情
16.观察$\frac{1}{2}$=$\frac{1}{2}$;$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$;$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$=$\frac{3}{4}$;…,由此推算$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$=$\frac{7}{8}$.

分析 根据裂项求和,即可找到规律,问题得以解决.

解答 解:$\frac{1}{2}$=$\frac{1}{1×2}$=1-$\frac{1}{2}$;
$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$=$\frac{1}{1×2}$+$\frac{1}{2×3}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=1-$\frac{1}{3}$,
$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$=$\frac{3}{4}$=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$,
∴$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$=1-$\frac{1}{8}$=$\frac{7}{8}$,
故答案为:$\frac{7}{8}$.

点评 本题考查了归纳推理的问题,关键是采用裂项求和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知角α的终边过点P(-3,4).
(Ⅰ)求$\frac{tanα}{sin(π-α)-cos(\frac{π}{2}+α)}$的值;
(Ⅱ)若β为第三象限角,且tan$β=\frac{3}{4}$,求cos(2α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-a|x-1|.
(1)若y=f(x)是偶函数,求a的值;
(2)当a<0时,直接写出函数y=f(x)的单调区间(不需给出演算步骤);
(3)当a>0时,求函数y=f(x),x∈[0,4]的最小值g(a)和最大值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,图象关于直线x=$\frac{π}{3}$对称.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)在给定的坐标系中画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=(m2-1)+(1-m)i,m∈R,i是虚数单位,若z是纯虚数,则m的值为(  )
A.m=±1B.m=1C.m=-1D.m=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为调查某地区高三学生是否需要心理疏导,用简单随机抽样方法从该校调查了500位高三学生,结果如下:
 
需要4030
不需要160270
(Ⅰ)估计该地区高三学生中,需要心理疏导的高三学生的百分比;
(Ⅱ)能否有99%的把握认为该地区高三学生是否需要心理疏导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的抽样方法来调查估计该地区高三学生中,需要提供心理疏导的高三学生的比例?请说明理由.
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.050.0250.0100.001
k03.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设Sn=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$,且Sn=$\frac{7}{8}$,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设一元二次不等式ax2+bx+1>0的解集为{x|-1<x<2},则ab的值为(  )
A.1B.-$\frac{1}{4}$C.4D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一公差不为0的等差数列{an}共有100项,首项为5,其第1、4、16项分布为正项等比数列{bn}的第1、3、5项.
(1)求{an}各项的和S;
(2)记{bn}的末项不大于$\frac{S}{2}$,求{bn}项数的最值N;
(3)记{an}前n项和为Sn,{bn}前N项和为TN,问:是否存在自然数m,使Sm=TN

查看答案和解析>>

同步练习册答案