分析 根据函数的周期性,作出函数f(x)的图象,利用直线和圆相切的条件求出直线斜率,利用数形结合即可得到结论.
解答
解:由kx-y+k=0(k>0)得y=k(x+1),(k>0)
则直线过定点A(-1,0),
当x∈[0,2)时,f(x)=$\sqrt{2x-{x}^{2}}$,即(x-1)2+y2=1,(y≥0),
对应的根据为圆心在(1,0)的上半圆,
∵f(x)满足f(x+2)=f(x),
∴当x∈[2,4)时,(x-3)2+y2=1,(y≥0),此时圆心为(3,0),
当直线和圆(x-1)2+y2=1,(y≥0)相切时此时有2个交点
此时圆心(1,0)到直线的距离d=$\frac{|k+k|}{\sqrt{1+{k}^{2}}}$=1,
解得k=$\frac{\sqrt{3}}{3}$或k=-$\frac{\sqrt{3}}{3}$(舍).
当线和圆(x-3)2+y2=1,(y≥0)相切时此时有4个交点,
此时圆心(3,0)到直线的距离d=$\frac{|3k+k|}{\sqrt{1+{k}^{2}}}$=1,
解得k=$\frac{\sqrt{15}}{15}$或k=-$\frac{\sqrt{15}}{15}$(舍).
若若直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个不同交点,
则直线在AB和AC之间,
则$\frac{\sqrt{15}}{15}$<k<$\frac{\sqrt{3}}{3}$,
故答案为:$(\frac{{\sqrt{15}}}{15},\frac{{\sqrt{3}}}{3})$.
点评 本题主要考查函数与方程之间的应用,利用数形结合以及直线和圆心相切的等价条件是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ①② | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x1)<0,$f({x_2})>-\frac{1}{2}$ | B. | f(x1)<0,$f({x_2})<\frac{1}{2}$ | C. | f(x1)>0,$f({x_2})<-\frac{1}{2}$ | D. | f(x1)>0,$f({x_2})>\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com