精英家教网 > 高中数学 > 题目详情
9.已知双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲线f(x)=ex在点(0,1)处的切线方程为2mx-ny+1=0,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

分析 求函数的导数,根据导数的几何意义建立方程组关系求出m,n的值,利用双曲线的渐近线的性质进行求解即可.

解答 解:∵(x)=ex
∴f′(x)=ex
则f′(0)=e0=1,
则曲线f(x)=ex在点(0,1)处的切线方程为y-1=x,即x-y-1=0,
∵f(x)=ex在点(0,1)处的切线方程为2mx-ny+1=0,
∴$\left\{\begin{array}{l}{2m=1}\\{-n=-1}\end{array}\right.$得$\left\{\begin{array}{l}{m=\frac{1}{2}}\\{n=1}\end{array}\right.$,
则双曲线的方程为$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{1}=1$,
则双曲线的渐近线方程为y=$±\sqrt{2}$x,
故选:A.

点评 本题主要考查双曲线渐近线的求解,根据导数的几何意义求出参数m,n的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=xlnx+(x-1)2,且x0是函数f(x)的极值点.给出以下几个结论:
①$0<{x_0}<\frac{1}{e}$;
②$\frac{1}{e}<{x_0}<1$;
③f(x0)+x0<0;
④f(x0)+x0>0
其中结论正确的是②④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.偶函数f(x)满足f(1-x)=f(1+x),且在x∈[0,1]时,f(x)=$\sqrt{2x-{x}^{2}}$,若直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个交点,则k的取值范围是$(\frac{{\sqrt{15}}}{15},\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列五个说法:
①S6为Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以下四个命题中,正确的个数是(  )
①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”;
②命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要条件;
④若函数f(x)在(2015,2017)上有零点,则一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一点P,与坐标原点O,右焦点F2构成正三角形,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在极坐标系中,圆C的极坐标方程为ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{4}{5}t}\\{y=-1-\frac{3}{5}t}\end{array}\right.$(t为参数),求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图中,若f(x)=sinx,g(x)=cosx,x∈[0,$\frac{π}{2}$],且h(x)≥m恒成立,则m的最大值是(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,已知直线l:x+y+a=0,与点A(0,2),若直线l上存在点M满足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O为原点),则实数a的取值范围是(  )
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

同步练习册答案