分析 求导数,利用零点存在定理,可判断①②;f(x0)+x0=x0lnx0+(x0-1)2+x0=x0(lnx0+2x0-1)+1-${{x}_{0}}^{2}$>0,可判断③④.
解答 解:f(x)=xlnx+(x-1)2,定义域是(0,+∞),
f′(x)=lnx+2x-1,显然f′(x)是增函数,
而f′($\frac{1}{e}$)=-2+$\frac{2}{e}$<0,f′(1)=1>0,
∴$\frac{1}{e}$<x0<1,
∴①错误,②正确,
f(x0)+x0=x0lnx0+(x0-1)2+x0=x0(lnx0+2x0-1)+1-${{x}_{0}}^{2}$=1-${{x}_{0}}^{2}$>0
∴③错误,④正确,
故答案为:②④.
点评 本题考查利用导数研究函数的极值,考查学生的计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | $(0,\frac{1}{2})$ | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ①② | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x1)<0,$f({x_2})>-\frac{1}{2}$ | B. | f(x1)<0,$f({x_2})<\frac{1}{2}$ | C. | f(x1)>0,$f({x_2})<-\frac{1}{2}$ | D. | f(x1)>0,$f({x_2})>\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com