精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=xlnx-ax2有两个极值点,则实数a的取值范围为(  )
A.(-∞,0)B.(0,+∞)C.$(0,\frac{1}{2})$D.(0,1)

分析 先求导函数,函数f(x)=x(lnx-ax)有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,等价于函数y=lnx与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.

解答 解:由题意,y′=lnx+1-2ax
令f′(x)=lnx-2ax+1=0得lnx=2ax-1,
函数y=xlnx-ax2有两个极值点,等价于f′(x)=lnx-2ax+1有两个零点,
等价于函数y=lnx与y=2ax-1的图象有两个交点,
在同一个坐标系中作出它们的图象(如图)
当a=$\frac{1}{2}$时,直线y=2ax-1与y=lnx的图象相切,
由图可知,当0<a<$\frac{1}{2}$时,y=lnx与y=2ax-1的图象有两个交点.
则实数a的取值范围是(0,$\frac{1}{2}$).
故选:C.

点评 本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,已知公比q=-2,S5=33,求a1和a5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若不等式x2+(m-3)x+m≤0有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1-$\frac{1}{{x}^{2}}$)6的展开式中,其末尾三项系数之和为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x3+ax2+3x-9,已知x=-3是函数f(x)的一个极值点,则实数a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x.
(Ⅰ)求f′(2)的值;
(Ⅱ)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=xlnx+(x-1)2,且x0是函数f(x)的极值点.给出以下几个结论:
①$0<{x_0}<\frac{1}{e}$;
②$\frac{1}{e}<{x_0}<1$;
③f(x0)+x0<0;
④f(x0)+x0>0
其中结论正确的是②④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax+$\frac{b}{x}$(a,b∈R),且对任意x>0,都有f(x)+f($\frac{1}{x}$)=0.
(Ⅰ)求a,b的关系式;
(Ⅱ)若f(x)存在两个极值点x1,x2,且x1<x2,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明f($\frac{a^2}{2}$)>0,并指出函数y=f(x)零点的个数(要求说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列五个说法:
①S6为Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案