精英家教网 > 高中数学 > 题目详情
18.如图所示的程序框图中,若f(x)=sinx,g(x)=cosx,x∈[0,$\frac{π}{2}$],且h(x)≥m恒成立,则m的最大值是(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.0

分析 由已知中的程序框图可得该程序的功能是计算并输出分段函数:h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$的值,分类讨论即可求出h(x)的最小值,可得答案.

解答 解:由已知中的程序框图可得该程序的功能是:
计算并输出分段函数:h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$的值,
利用正弦函数,余弦函数的图象和性质可知:
当x∈[0,$\frac{π}{4}$)时,f(x)=sinx∈[0,$\frac{\sqrt{2}}{2}$),g(x)=cosx∈($\frac{\sqrt{2}}{2}$,1],g(x)>f(x),
由题意:h(x)=cosx∈($\frac{\sqrt{2}}{2}$,1],
当x∈[$\frac{π}{4}$,$\frac{π}{2}$],f(x)=sinx∈[$\frac{\sqrt{2}}{2}$,1],g(x)=cosx∈[0,$\frac{\sqrt{2}}{2}$],g(x)≤f(x),
由题意:h(x)=sinx∈[$\frac{\sqrt{2}}{2}$,1],
综上,可得x∈[0,$\frac{π}{2}$]时,h(x)的最小值为sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
又∵h(x)≥m恒成立,
∴m的最大值是$\frac{\sqrt{2}}{2}$,
故选:B.

点评 本题主要考查了程序框图,分段函数的应用,考查了函数恒成立的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a为常数,函数f(x)=x(lnx-2ax)有两个极值点x1,x2($x_1^{\;}<{x_2}$)(  )
A.f(x1)<0,$f({x_2})>-\frac{1}{2}$B.f(x1)<0,$f({x_2})<\frac{1}{2}$C.f(x1)>0,$f({x_2})<-\frac{1}{2}$D.f(x1)>0,$f({x_2})>\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲线f(x)=ex在点(0,1)处的切线方程为2mx-ny+1=0,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是2,则四棱锥B-ECDF的体积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥S-ABCD中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,AB=3.
(1)求SA与BC所成角的余弦值;
(2)求证:AB⊥SD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系中,已知双曲线的中心在原点,焦点在x轴上,实轴长为8,离心率为$\frac{5}{4}$,则它的渐近线的方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=±$\frac{9}{16}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知四边形ABCD,ADEF均为平行四边形,DE=BC=2,BD⊥CD,DE⊥平面ABCD.
(Ⅰ)求证:平面FAB⊥平面ABCD;
(Ⅱ)求四棱锥F-ABCD的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrow{d}$,$\overrightarrow{AE}$=$\overrightarrow{e}$,则$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$-$\overrightarrow{e}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i是虚数单位,若复数z=2i-$\frac{5}{2-i}$,则|z|的值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

同步练习册答案