分析 (1)由AD∥BC,得∠SAD是SA与BC所成角,由此利用余弦定理能求出SA与BC所成角的余弦值.
(2)取AD中点O,连结SO,推导出SO⊥AD,从而SO⊥平面ABCD,进而AB⊥SO,由AB⊥AD,得AB⊥平面SAD,由此能证明AB⊥SD.
解答
解:(1)∵在四棱锥S-ABCD中,底面ABCD是正方形,
∴AD∥BC,
∴∠SAD是SA与BC所成角,
∵SA=SD=2,AB=3,∴AD=3,
∴cos∠SAD=$\frac{S{A}^{2}+A{D}^{2}-S{D}^{2}}{2SA•AD}$=$\frac{4+9-4}{2×2×3}$=$\frac{3}{4}$.
∴SA与BC所成角的余弦值为$\frac{3}{4}$.
证明:(2)取AD中点O,连结SO,
∵SA=SD=2,∴SO⊥AD,
∵平面SAD⊥平面ABCD,∴SO⊥平面ABCD,
∴AB⊥SO,∵底面ABCD是正方形,∴AB⊥AD,
∵AD∩SO=O,∴AB⊥平面SAD,
∵SD?平面SAD,∴AB⊥SD.
点评 本题考查异面直线所成角的余弦值的求法,考查异面直线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{1}{2}$x | B. | y=±$\frac{\sqrt{2}}{2}$x | C. | y=±$\sqrt{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com