分析 根据抛物线的方程求出抛物线的准线方程和焦点坐标,结合直角三角形的性质建立方程关系进行求解即可.
解答 解:由抛物线的标准方程得抛物线的准线为x=-1,抛物线的焦点F(1,0),
将x=-1代入双曲线方程得4-$\frac{y^2}{b^2}$=1,即$\frac{y^2}{b^2}$=3,则y=±$\sqrt{3}$b,
设A(-1,$\sqrt{3}$b),B(-1,-$\sqrt{3}$b),
∵△FAB为直角三角形,
∴tan45°=$\frac{\sqrt{3}b}{2}$=1,则b=$\frac{2}{\sqrt{3}}$,
则双曲线的方程为4x2-$\frac{{y}^{2}}{\frac{4}{3}}$=1,
即$\frac{{x}^{2}}{\frac{1}{4}}$-$\frac{{y}^{2}}{\frac{4}{3}}$=1,则a=$\frac{1}{2}$,
c=$\sqrt{\frac{1}{4}+\frac{4}{3}}$=$\frac{\sqrt{57}}{6}$,
则双曲线的离心率e=$\frac{c}{a}$=$\frac{\frac{\sqrt{57}}{6}}{\frac{1}{2}}$=$\frac{{\sqrt{57}}}{3}$,
故答案为:$\frac{{\sqrt{57}}}{3}$
点评 本题主要考查双曲线离心率的计算,根据抛物线和双曲线的性质建立方程是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数段 | [0,7) | [7,8) | [8,9) | [9,10) |
| 新生儿数 | 1 | 3 | 8 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com