精英家教网 > 高中数学 > 题目详情
8.有下列命题:
①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是24;
②由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是36;
③某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为24;
④已知(1+x)8=a0+a1x+…+a8x8,其中a0,a1,…,a8中奇数的个数为2.
其中真命题的序号是①②③④.

分析 ①根据分布计数原理进行计算.
②根据排列组合进行计算.
③根据排列组合进行计算.
④根据二项式系数的性质进行判断.

解答 解:①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是4×3×2=24;故①正确,
②如果5在两端,则1、2有三个位置可选,排法为2×A32A22=24种,
如果5不在两端,则1、2只有两个位置可选,首先排5,有${C}_{3}^{1}$=3种,然后排1和2,有A22A22=12种,
3×A22A22=12种,共计12+24=36种;故②正确;
③将空位插到三个人中间,三个人有两个中间位置和两个两边位置,就是将空位分为四部分,五个空位四分只有1,1,1,2
空位五差别,只需要空位2分别占在四个位置就可以有四种方法,另外三个人排列A33=6,
根据分步计数可得共有4×6=24,故③正确,;
④由(1+x)8=a0+a1x+a2x2+…+a8x8
可知:a0,a1,a2…a8均为二项式系数,
依次是c80,c81,c82…c88
∵C80=C88=1,C81=C87=8,C82=C86=28;C83=C85=56;C84=70
∴a0,a1,a2…a8中奇数只有a0,a8两个,故④正确,
故答案为:①②③④.

点评 本题主要考查命题的真假判断,涉及排列组合以及二项式定理的应用,考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex-2x.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)证明:当x>0时,x2<ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′($\frac{π}{12}$)=0;
③若函数g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),则g′(2016)=2015!;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中假命题为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1存在一点P,与坐标原点O、右焦点F2构成正三角形,则双曲线的离心率为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=x2(0≤x≤1),记H(a,b)为函数f(x)图象上点到直线y=ax+b距离的最大值,则H(a,b)的最小值是$\frac{\sqrt{2}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥S-ABCD中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,AB=3.
(1)求SA与BC所成角的余弦值;
(2)求证:AB⊥SD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过原点且与曲线y=$\frac{x+9}{x+5}$相切的方程是(  )
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下列说法:
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
④若sin α=sin β,则α与β的终边相同;
⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.
其中错误说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{1}{1+i}$-i(i为虚数单位),则|z|=(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案