精英家教网 > 高中数学 > 题目详情
20.经过原点且与曲线y=$\frac{x+9}{x+5}$相切的方程是(  )
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

分析 设切点为(m,n),求出函数的导数,可得切线的斜率和切线方程,代入原点,解方程可得m=-3或-15,即有切线的方程.

解答 解:设切点为(m,n),
y=$\frac{x+9}{x+5}$的导数为y′=-$\frac{4}{(x+5)^{2}}$,
可得切线的斜率为k=-$\frac{4}{(5+m)^{2}}$,
切线的方程为y-$\frac{m+9}{m+5}$=-$\frac{4}{(5+m)^{2}}$(x-m),
代入原点(0,0),可得-$\frac{m+9}{m+5}$=-$\frac{4}{(5+m)^{2}}$•(-m),
解得m=-3或-15.
则切线的方程为y=-x或y=-$\frac{1}{25}$x.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,设出切点和正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax-ln(x+1),g(x)=ex-x-1.曲线y=f(x)与y=g(x)在原点处的切线相同
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若x≥0时,g(x)≥kf(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知一个几何体的三视图如图所示,则该几何体的外接球的表面积为(  )
A.24πB.36πC.48πD.54π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.有下列命题:
①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是24;
②由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是36;
③某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为24;
④已知(1+x)8=a0+a1x+…+a8x8,其中a0,a1,…,a8中奇数的个数为2.
其中真命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共线,$\overrightarrow a$=$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$+λ$\overrightarrow{e_2}$,要使$\overrightarrow a$,$\overrightarrow b$作为平面内所有向量的一组基底,则实数λ的取值范围是(-∞,4)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\sqrt{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化简后等于(  )
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三个顶点A(0,4),B(-2,6),C(8,2);
(1)求AB边的中线所在直线方程.
(2)求AC的中垂线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若变量x,y满足$\left\{\begin{array}{l}x-y+3≥0\\ x+y+1≥0\\ x≤1\end{array}\right.$,且z=2x+y-1的最大值为5.

查看答案和解析>>

同步练习册答案