精英家教网 > 高中数学 > 题目详情
12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化简后等于(  )
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

分析 利用向量的三角形法则与多边形法则即可得出.

解答 解:向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$=$\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OP}$+$\overrightarrow{PB}$+$\overrightarrow{BM}$=$\overrightarrow{AM}$,
故选:D.

点评 本题考查了向量的三角形法则与多边形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.P是曲线x2-y-lnx=0上的任意一点,则点P到直线y=x-3的最小距离为(  )
A.1B.$\frac{{3\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=x2(0≤x≤1),记H(a,b)为函数f(x)图象上点到直线y=ax+b距离的最大值,则H(a,b)的最小值是$\frac{\sqrt{2}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过原点且与曲线y=$\frac{x+9}{x+5}$相切的方程是(  )
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,则双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±3$\sqrt{2}$y=0D.3$\sqrt{2}$x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下列说法:
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
④若sin α=sin β,则α与β的终边相同;
⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.
其中错误说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列选项中叙述正确的是(  )
A.终边不同的角同一三角函数值可以相等
B.三角形的内角是第一象限角或第二象限角
C.第一象限是锐角
D.第二象限的角比第一象限的角大

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{y≤1}\\{x-y-2≤0}\end{array}\right.$,则z=2x-2y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin(α+$\frac{π}{4}}$)=$\frac{5}{13}$,则cos(${\frac{π}{4}$-α)的值为$\frac{5}{13}$.

查看答案和解析>>

同步练习册答案