精英家教网 > 高中数学 > 题目详情
7.设点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,则双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±3$\sqrt{2}$y=0D.3$\sqrt{2}$x±y=0

分析 求出点F到渐近线的距离,根据条件建立比例关系,求出a,b的关系即可得到结论.

解答 解:双曲线的右焦点F(c,0),到渐近线y=$\frac{b}{a}$x,即bx-ay=0的距离d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{bc}{c}=b$,
∵点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,
∴$\frac{b}{2c}=\frac{1}{6}$,即c=3b,
则c2=a2+b2=9b2
即a2=8b2
则a=2$\sqrt{2}$b,
则双曲线的渐近线方程为y=±$\frac{b}{a}$x=±$\frac{b}{2\sqrt{2}b}$x=±$\frac{1}{2\sqrt{2}}$x,
即x±2$\sqrt{2}$y=0,
故选:B.

点评 本题主要考查双曲线的性质,根据距离关系求出a,b的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x+$\frac{1}{e^x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线y=kx与曲线y=f(x)没有公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.棱长均为2的正四棱锥的体积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共线,$\overrightarrow a$=$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$+λ$\overrightarrow{e_2}$,要使$\overrightarrow a$,$\overrightarrow b$作为平面内所有向量的一组基底,则实数λ的取值范围是(-∞,4)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列命题:
(1)若0<x<$\frac{π}{2}$,则sinx<x<tanx.
(2)若-$\frac{π}{2}$<x<0,则sinx<x<tanx.
(3)设A,B,C是△ABC的三个内角,若A>B>C,则sinA>sinB>sinC.
(4)设A,B是钝角△ABC的两个锐角,则sinA>cosB.
其中,正确命题的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化简后等于(  )
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,
(1)求tanα+tan2α的值;    
(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z满足(1+z)•i=z,则复数$\overline{z}$为(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:如果x,y,z,$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q,则$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

查看答案和解析>>

同步练习册答案