精英家教网 > 高中数学 > 题目详情
16.设复数z满足(1+z)•i=z,则复数$\overline{z}$为(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(1+z)•i=z,得$z=\frac{i}{1-i}=\frac{i(1+i)}{(1-i)(1+i)}=-\frac{1}{2}+\frac{1}{2}i$,
∴$\overline{z}=-\frac{1}{2}-\frac{1}{2}i$,
故选:D.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知四棱锥P-ABCD,它的底面是边长为2的正方形,其俯视图如图所示,侧视图为直角三角形,则该四棱锥的侧面中直角三角形的个数有3个,该四棱锥的体积为$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,则双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±3$\sqrt{2}$y=0D.3$\sqrt{2}$x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列选项中叙述正确的是(  )
A.终边不同的角同一三角函数值可以相等
B.三角形的内角是第一象限角或第二象限角
C.第一象限是锐角
D.第二象限的角比第一象限的角大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π) 的部分图象如图所示,
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的对称轴方程和对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{y≤1}\\{x-y-2≤0}\end{array}\right.$,则z=2x-2y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列直线和椭圆的交点坐标:
(1)3x+10y-25=0,$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1=;
(2)3x-y+2=0,$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),A(0,b),C(0,-b),B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于D,若双曲线离心率为2,则∠BDF的余弦值为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{5\sqrt{7}}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),在△ABC中,sinA+cosA=$\sqrt{2}$.
(1)当$\overrightarrow{m}$∥$\overrightarrow{n}$时,求sin2x+sin2x的值;
(2)设函数f(x)=2($\overrightarrow m$+$\overrightarrow n$)•$\overrightarrow n$,求f(A)的值.

查看答案和解析>>

同步练习册答案