精英家教网 > 高中数学 > 题目详情
8.求下列直线和椭圆的交点坐标:
(1)3x+10y-25=0,$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1=;
(2)3x-y+2=0,$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.

分析 直接联立直线方程与椭圆方程求得(1)(2)中的直线与椭圆的交点坐标.

解答 解:(1)联立$\left\{\begin{array}{l}{3x+10y-25=0}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,
消去y,得(x-3)2=0,即x=3,
代入3x+10y-25=0,得y=$\frac{8}{5}$.
∴3x+10y-25=0与$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的交点坐标为(3,$\frac{8}{5}$);
(2)联立$\left\{\begin{array}{l}{3x-y+2=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,
消去y,得37x2+48x=0,解得x=0或x=-$\frac{48}{37}$.
当x=0时,y=2,当x=-$\frac{48}{37}$时,y=$-\frac{70}{37}$.
∴3x-y+2=0与$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交点坐标为(0,2),($-\frac{48}{37},-\frac{70}{37}$).

点评 本题考查椭圆的标准方程,考查了方程组的解法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.棱长均为2的正四棱锥的体积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,
(1)求tanα+tan2α的值;    
(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z满足(1+z)•i=z,则复数$\overline{z}$为(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Sn为正项数列{an}的前n项和,且满足an=2$\sqrt{{S}_{n}}$-1,n∈N*
(1)求{an}的通项公式;
(2)令bn=2${\;}^{{a}_{n}+1}$•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O为坐标原点,P为双曲线$\frac{x^2}{a^2}$-y2=1(a>0)上一点,过P作两条渐近线的平行线交点分别为A,B,若平行四边形OAPB的面积为$\frac{{\sqrt{3}}}{2}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给定平面向量(1,1),那么,平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是将向量(1,1)经过(  )变换得到的.
A.顺时针旋转60°所得B.顺时针旋转120°所得
C.逆时针旋转60°所得D.逆时针旋转120°所得

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:如果x,y,z,$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q,则$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2+4i}{1-i}$(i为虚数单位)的共轭复数等于(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

同步练习册答案