精英家教网 > 高中数学 > 题目详情
17.证明:如果x,y,z,$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q,则$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

分析 根据反证法的步骤证明即可

解答 证明:x,y,z∈Q,
假设$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$至少有一个为无理数,
则$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$属于无理数,
这与已知$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q相矛盾,
故假设不成立,
则$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

点评 本题考查用反证法证明不等式,用反证法证明不等式的关键是推出矛盾.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,则双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±3$\sqrt{2}$y=0D.3$\sqrt{2}$x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列直线和椭圆的交点坐标:
(1)3x+10y-25=0,$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1=;
(2)3x-y+2=0,$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),A(0,b),C(0,-b),B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于D,若双曲线离心率为2,则∠BDF的余弦值为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{5\sqrt{7}}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$,x∈R.
(I)求函数f(x)的最小正周期T及在[-π,π]上的单调递减区间.
(II)在△ABC中,边a,b,c的对角分别为A,B,C,已知A为锐角,a=3$\sqrt{3}$,c=6,且f(A)是函数f(x)在[0,$\frac{π}{2}}$]上的最大值,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin(α+$\frac{π}{4}}$)=$\frac{5}{13}$,则cos(${\frac{π}{4}$-α)的值为$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=sin2(x+$\frac{π}{4}$)的图象沿x轴向右平移a个单位(a>0),所得图象关于y轴对称,当a的值最小值时,函数f(x)=2cos(x+a)-m在[0,π]内有两个不同的零点,则实数m的取值范围是(  )
A.[-2,$\sqrt{2}$]B.[-$\sqrt{2}$,2]C.[-2,-$\sqrt{2}$]D.(-2,-$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),在△ABC中,sinA+cosA=$\sqrt{2}$.
(1)当$\overrightarrow{m}$∥$\overrightarrow{n}$时,求sin2x+sin2x的值;
(2)设函数f(x)=2($\overrightarrow m$+$\overrightarrow n$)•$\overrightarrow n$,求f(A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某幼儿园大班有30名幼儿,从中抽取6名,分别统计他们的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为18.

查看答案和解析>>

同步练习册答案