精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),在△ABC中,sinA+cosA=$\sqrt{2}$.
(1)当$\overrightarrow{m}$∥$\overrightarrow{n}$时,求sin2x+sin2x的值;
(2)设函数f(x)=2($\overrightarrow m$+$\overrightarrow n$)•$\overrightarrow n$,求f(A)的值.

分析 (1)根据向量平行与坐标的关系列方程解出tanx,利用三角函数恒等变换化简求出;
(2)利用三角函数恒等变换化简得出A,求出f(x)的解析式,代入即可求出f(A).

解答 解:(1)若$\overrightarrow{m}∥\overrightarrow{n}$,则-sinx-$\frac{3}{4}$cosx=0,即sinx=-$\frac{3}{4}$cosx.
∴tanx=-$\frac{3}{4}$.
∴sin2x+sin2x=$\frac{si{n}^{2}x+2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{ta{n}^{2}x+2tanx}{ta{n}^{2}x+1}$=$\frac{\frac{9}{16}-\frac{3}{2}}{\frac{9}{16}+1}$=-$\frac{3}{5}$.
(2)$\overrightarrow m$+$\overrightarrow n$=(sinx+cosx,-$\frac{1}{4}$),
∴f(x)=2(sinxcosx+cos2x+$\frac{1}{4}$)=sin2x+cos2x+$\frac{3}{2}$=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+$\frac{3}{2}$.
∵sinA+cosA=$\sqrt{2}$sin(A+$\frac{π}{4}$)=$\sqrt{2}$,
∴A+$\frac{π}{4}$=$\frac{π}{2}$,即A=$\frac{π}{4}$.
∴f(A)=$\sqrt{2}$sin$\frac{3π}{4}$+$\frac{3}{2}$=$\frac{5}{2}$.

点评 本题考查了三角函数的恒等变换,平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设复数z满足(1+z)•i=z,则复数$\overline{z}$为(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明:如果x,y,z,$\sqrt{x}$+$\sqrt{y}$+$\sqrt{z}$∈Q,则$\sqrt{x}$,$\sqrt{y}$,$\sqrt{z}$∈Q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设点A1、A2分别为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的下顶点和上顶点,若在椭圆上存在点P使得k${\;}_{P{A}_{1}}$•k${\;}_{P{A}_{2}}$≥-4,则椭圆C的离心率的取值范围是$(0,\frac{{\sqrt{3}}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等边三角形ABC的边长为1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\frac{lnx}{x}}$+$\sqrt{x}$在点(1,f(1))处的切线斜率为(  )
A.$\frac{3}{2}$B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2+4i}{1-i}$(i为虚数单位)的共轭复数等于(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,$\overrightarrow{AB}$=(2,2),$\overrightarrow{AC}$=(1,k),若∠B=90°,则k值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=an+$\frac{1}{{2}^{n}}$,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案