| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{2}$ | D. | $\frac{3}{2}$ |
分析 判断各向量的夹角,代入向量的数量积公式计算即可.
解答 解:$\vec a$•$\vec b$=1×1×cos60°=$\frac{1}{2}$,
$\vec c$•$\vec b$=1×1×cos60°=$\frac{1}{2}$,
$\vec a$•$\vec c$=1×1×cos120°=-$\frac{1}{2}$.
∴$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=$\frac{1}{2}+\frac{1}{2}-\frac{1}{2}=\frac{1}{2}$.
故选:B.
点评 本题考查了平面向量的数量积运算,找出向量夹角是关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,2] | C. | [-2,-$\sqrt{2}$] | D. | (-2,-$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n+1个零 | B. | 2n+2个零 | C. | 2n+3个零 | D. | 2n+4个零 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com