| A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,2] | C. | [-2,-$\sqrt{2}$] | D. | (-2,-$\sqrt{2}$] |
分析 首先通过三角恒等变换变形呈正弦型函数,进一步利用f(-x)=f(x)求出a的最小值,利用余弦函数的图象和性质即可求得实数m的取值范围.
解答
解:∵y=sin2(x+$\frac{π}{4}$)=$\frac{1-cos(2x+\frac{π}{2})}{2}$=$\frac{1}{2}$sin2x+$\frac{1}{2}$,
∴将函数y=sin2(x+$\frac{π}{4}$)的图象沿x轴向右平移a个单位(a>0),所得图象对应的解析式为:y=$\frac{1}{2}$sin(2x-2a)+$\frac{1}{2}$,
又∵y=$\frac{1}{2}$sin(2x-2a)+$\frac{1}{2}$为偶函数,
∴-2a=k$π+\frac{π}{2}$,k∈Z,解得:a=-$\frac{kπ}{2}$-$\frac{π}{4}$,k∈Z,
∵a>0,
∴amin=$\frac{π}{4}$,f(x)=2cos(x+$\frac{π}{4}$)-m,x∈[0,π],
令t=x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],则m=2cost,t∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴利用余弦函数的图象和性质可知:-2$<m≤-\sqrt{2}$.
故选:C.
点评 本题主要考查的知识要点:三角函数的恒等变形,函数图象的平移变换,关于图象的对称问题,考查了计算能力和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 顺时针旋转60°所得 | B. | 顺时针旋转120°所得 | ||
| C. | 逆时针旋转60°所得 | D. | 逆时针旋转120°所得 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com