| A. | 顺时针旋转60°所得 | B. | 顺时针旋转120°所得 | ||
| C. | 逆时针旋转60°所得 | D. | 逆时针旋转120°所得 |
分析 向量表示已知向量,利用向量旋转公式求解即可.
解答 解:平面向量(1,1)=$\sqrt{2}$(cos45°,sin45°).
令平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)=$\sqrt{2}$(cosθ,sinθ).
可得cosθ=$\frac{\sqrt{2}-\sqrt{6}}{4}$,sinθ=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
θ=105°.
105°-45°=60°.
平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是将向量(1,1)经过逆时针旋转60°所得变换得到的.
故选:C.
点评 本题考查向量的坐标运算,向量的旋转变换,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ④ | C. | ②③⑤ | D. | ⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0” | |
| B. | 若p为真命题,q为假命题,则(¬p)∨q为真命题 | |
| C. | 为了了解高考前高三学生每天的学习时间,现要用系统抽样的方法从某班50个学生中抽取一个容量为10的样本,已知50个学生的编号为1,2,3…50,若8号被选出,则18号也会被选出 | |
| D. | 已知m、n是两条不同直线,α、β是两个不同平面,α∩β=m,则“n?α,n⊥m”是“α⊥β”的充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,2] | C. | [-2,-$\sqrt{2}$] | D. | (-2,-$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com