精英家教网 > 高中数学 > 题目详情
10.下列命题:
(1)若一条直线与两个平行平面中的一个平行,那么它也与另一个平面平行;
(2)若平面α内有不共线的三点到平面β的距离相等,则α∥β;
(3)过平面α外一点和平面α内一点与平面α垂直的平面只有一个;
(4)若平面α⊥平面β,α∩β=b,直线a?α,α⊥β,则a∥α.
其中正确的有(  )个.
A.1B.2C.3D.4

分析 利用平面与平面平行、垂直的判定与性质,即可得出结论.

解答 解:(1)当一条直线与两个平行平面中的一个平面平行,则这条直线与另一平面的位置关系是一定不能相交,是平行或这条直线在这个平面内,故不正确;
(2)若平面α内有不共线的三个点到平面β距离相等,可能平行,也可能相交,不正确;
(3)当平面α外一点和平面α内一点连线不垂直于平面时,此时过此连线存在唯一一个与平面α垂直的平面;当平面α外一点和平面α内一点连线垂直于平面时,则根据面面垂直的判定定理,可作无数个与平面α垂直的平面,故不正确;
(4)∵平面α⊥平面β,直线a⊥β,∴平面α内存在直线a′与直线a平行,∵a?α,a′?α,且a∥a′,∴a∥平面α,正确.
故选:A.

点评 本题主要考查了两平面的位置关系及线面平行的判定等概念,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.给定平面向量(1,1),那么,平面向量($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$)是将向量(1,1)经过(  )变换得到的.
A.顺时针旋转60°所得B.顺时针旋转120°所得
C.逆时针旋转60°所得D.逆时针旋转120°所得

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等边三角形ABC的边长为1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2+4i}{1-i}$(i为虚数单位)的共轭复数等于(  )
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.f(x)=tan2x是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,$\overrightarrow{AB}$=(2,2),$\overrightarrow{AC}$=(1,k),若∠B=90°,则k值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,则二项式($\sqrt{t}$-$\frac{a}{6t}$)a展开式中的常数项是15.(填数值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.分解因式x3-4x2+2x+1=(x-1)$(x-\frac{3+\sqrt{13}}{2})$$(x-\frac{3-\sqrt{13}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一信号灯闪烁时每次等可能的出现红色或绿色信号,在该信号灯闪烁三次中,已知有一次是绿色信号,则至少有一次是红色信号的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

同步练习册答案