精英家教网 > 高中数学 > 题目详情
11.($\sqrt{26}$+5)2n+1的小数表示中,小数点后至少连续有(  )
A.2n+1个零B.2n+2个零C.2n+3个零D.2n+4个零

分析 设这个数的整数部分是A,小数部分是B,利用${(\sqrt{26}+5)}^{2n+1}$-${(\sqrt{26}-5)}^{2n+1}$的展开式,得出整数部分A,小数部分B=${(\sqrt{26}-5)}^{2n+1}$,利用B(A+B)=${(\sqrt{26}-5)}^{2n+1}$•${(\sqrt{26}+5)}^{2n+1}$=1,得出B<$\frac{1}{{10}^{2n+1}}$,即得它的小数点后至少连续有2n+1个零.

解答 解:设这个数的整数部分是A,小数部分是B,
则${(\sqrt{26}+5)}^{2n+1}$-${(\sqrt{26}-5)}^{2n+1}$
=2${C}_{2n+1}^{1}$•26n•5+2${C}_{2n+1}^{3}$•26n-1•53+2${C}_{2n+1}^{5}$•26n-2•55+…+2${C}_{2n+1}^{2n+1}$•52n+1
这个得数肯定是个整数所以就是A,
所以${(\sqrt{26}+5)}^{2n+1}$的小数部分B=${(\sqrt{26}-5)}^{2n+1}$;
(因为0<$\sqrt{26}$-5<1,所以0<${(\sqrt{26}-5)}^{2n+1}$<1)
并且有B(A+B)=${(\sqrt{26}-5)}^{2n+1}$•${(\sqrt{26}+5)}^{2n+1}$=1,
也就是这个数的小数部分和这个数的乘积为1,
所以A+B=${(\sqrt{26}+5)}^{2n+1}$>(5+5)2n+1=102n+1
所以B=$\frac{1}{A+B}$<$\frac{1}{{10}^{2n+1}}$;
即它的小数表示中,小数点后至少连续有2n+1个零.
故选:A.

点评 本题考查了二项式定理的应用问题,也考查了构造法与转化思想的应用问题,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.等边三角形ABC的边长为1,$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{CB}$=$\overrightarrow b$,$\overrightarrow{CA}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec c$•$\vec b$+$\vec a$•$\vec c$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a=${∫}_{-1}^{1}$5x${\;}^{\frac{2}{3}}$dx,则二项式($\sqrt{t}$-$\frac{a}{6t}$)a展开式中的常数项是15.(填数值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.分解因式x3-4x2+2x+1=(x-1)$(x-\frac{3+\sqrt{13}}{2})$$(x-\frac{3-\sqrt{13}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=xlnx,过点A(-$\frac{1}{{e}^{2}}$,0)作函数y=f(x)图象的切线,则切线的方程为x+y+$\frac{1}{{e}^{2}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=an+$\frac{1}{{2}^{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知y=2x(x≠0).
(1)求$\frac{{x}^{2}-3xy+{y}^{2}}{xy+{y}^{2}}$的值.
(2)求证:x2+$\frac{3}{2}$xy-y2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一信号灯闪烁时每次等可能的出现红色或绿色信号,在该信号灯闪烁三次中,已知有一次是绿色信号,则至少有一次是红色信号的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R)
(1)求f(x)的单调区间和极值;
(2)若f(x)≤0对定义域所有x恒成立,求k的取值范围;
(3)n≥2,n∈N时证明 ln2+ln3+…lnn≤$\frac{n(n-1)}{2}$.

查看答案和解析>>

同步练习册答案