分析 根据正四棱锥的结构特征计算棱锥的高,代入体积公式计算体积.
解答
解设正四棱锥的底面中心为O,连结OP,则PO⊥底面ABCD.
∵底面四边形ABCD是正方形,AB=2,
∴AO=$\sqrt{2}$.
∴OP=$\sqrt{P{A}^{2}-A{O}^{2}}$=$\sqrt{2}$.
∴正四棱锥的体积V=$\frac{1}{3}{S}_{正方形ABCD}•PO$=$\frac{1}{3}×{2}^{2}×\sqrt{2}$=$\frac{4\sqrt{2}}{3}$.
故答案为:$\frac{4\sqrt{2}}{3}$.
点评 本题考查了正四棱锥的结构特征,棱锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ④ | C. | ②③⑤ | D. | ⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$x±y=0 | B. | x±2$\sqrt{2}$y=0 | C. | x±3$\sqrt{2}$y=0 | D. | 3$\sqrt{2}$x±y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com