分析 根据题意,$\overrightarrow{a}$与$\overrightarrow{b}$不共线,求出$\overrightarrow{a}$与$\overrightarrow{b}$共线时λ的值,即可得出所求λ的取值范围.
解答 解:根据题意,要使$\overrightarrow a$,$\overrightarrow b$作为平面内所有向量的一组基底,则$\overrightarrow{a}$与$\overrightarrow{b}$不共线,
当$\overrightarrow{a}$与$\overrightarrow{b}$共线时,必存在实数m使$\overrightarrow{b}$=m$\overrightarrow{a}$,m∈R;
即2$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$=m($\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$),
故可得$\left\{\begin{array}{l}{2=m}\\{λ=2m}\end{array}\right.$,解得m=2,λ=4;
故要使两向量作基底,必有λ≠4.
故答案为:(-∞,4)∪(4,+∞).
点评 本题考查了平面向量共线定理的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ④ | C. | ②③⑤ | D. | ⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y=0或$\frac{x}{25}$+y=0 | B. | x-y=0或$\frac{x}{25}$+y=0 | C. | x+y=0或$\frac{x}{25}$-y=0 | D. | x-y=0或$\frac{x}{25}$-y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$x±y=0 | B. | x±2$\sqrt{2}$y=0 | C. | x±3$\sqrt{2}$y=0 | D. | 3$\sqrt{2}$x±y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 终边不同的角同一三角函数值可以相等 | |
| B. | 三角形的内角是第一象限角或第二象限角 | |
| C. | 第一象限是锐角 | |
| D. | 第二象限的角比第一象限的角大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com