精英家教网 > 高中数学 > 题目详情
9.已知△ABC的三个顶点A(0,4),B(-2,6),C(8,2);
(1)求AB边的中线所在直线方程.
(2)求AC的中垂线方程.

分析 (1)利用中点坐标公式、斜截式即可得出.
(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.

解答 解:(1)∵线段AB的中点为(-1,5),
∴AB边的中线所在直线方程是$\frac{y-5}{2-5}$=$\frac{x+1}{8+1}$,
即x+3y-14=0.
(2)AC的中点为(4.3)
∵KAC=$\frac{4-2}{0-8}$=-$\frac{1}{4}$,
∴y-3=4(x-4)即y=4x-13,
∴AC的中垂线方程为y=4x-13.

点评 本题考查了中点坐标公式、斜率计算公式、相互垂直的直线斜率之间的关系、斜截式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′;
②若函数h(x)=cos4x-sin4x,则h′($\frac{π}{12}$)=0;
③若函数g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),则g′(2016)=2015!;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中假命题为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过原点且与曲线y=$\frac{x+9}{x+5}$相切的方程是(  )
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下列说法:
①第二象限角大于第一象限角;
②三角形的内角是第一象限角或第二象限角;
③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
④若sin α=sin β,则α与β的终边相同;
⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.
其中错误说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列选项中叙述正确的是(  )
A.终边不同的角同一三角函数值可以相等
B.三角形的内角是第一象限角或第二象限角
C.第一象限是锐角
D.第二象限的角比第一象限的角大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7-10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以如表格记录了他们的评分情况.
 分数段[0,7)[7,8)[8,9)[9,10)
 新生儿数
(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;
(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记X表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{y≤1}\\{x-y-2≤0}\end{array}\right.$,则z=2x-2y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{1}{1+i}$-i(i为虚数单位),则|z|=(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=(  )
A.0B.-1C.1D.2

查看答案和解析>>

同步练习册答案