精英家教网 > 高中数学 > 题目详情
10.若变量x,y满足$\left\{\begin{array}{l}x-y+3≥0\\ x+y+1≥0\\ x≤1\end{array}\right.$,且z=2x+y-1的最大值为5.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y-1得y=-2x+z+1,
平移直线y=-2x+z+1,
由图象可知当直线y=-2x+z+1经过点A时,直线y=-2x+z+1的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=1}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
代入目标函数z=2x+y-1得z=2×1+4-1=5.
即目标函数z=2x+y-1的最大值为5.
故答案为:5.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.经过原点且与曲线y=$\frac{x+9}{x+5}$相切的方程是(  )
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{y≤1}\\{x-y-2≤0}\end{array}\right.$,则z=2x-2y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{1}{1+i}$-i(i为虚数单位),则|z|=(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),A(0,b),C(0,-b),B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于D,若双曲线离心率为2,则∠BDF的余弦值为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{5\sqrt{7}}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的离心率e=$\frac{{\sqrt{3}}}{2}$,一个焦点为F(${\sqrt{3}$,0).
(I)求椭圆的方程;
(Ⅱ)设B是椭圆与y轴负半轴的交点,过点B作椭圆的两条弦BM和BN,且BM⊥BN.
(i)直线MN是否过定点,如果是求出该点坐标,如果不是请说明理由;
(ii)若△BMN是等腰直角三角形,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.sin(α+$\frac{π}{4}}$)=$\frac{5}{13}$,则cos(${\frac{π}{4}$-α)的值为$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{x-y-1≤0}\\{2x+y-5≤0}\end{array}\right.$,关于目标函数z=|x-y|+|x-2y-2|最值的说法正确的是(  )
A.最小值0,最大值9B.最小值2,最大值9
C.最小值3,最大值10D.最小值2,最大值10

查看答案和解析>>

同步练习册答案