分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y-1得y=-2x+z+1,
平移直线y=-2x+z+1,
由图象可知当直线y=-2x+z+1经过点A时,直线y=-2x+z+1的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=1}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
代入目标函数z=2x+y-1得z=2×1+4-1=5.
即目标函数z=2x+y-1的最大值为5.
故答案为:5.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | x+y=0或$\frac{x}{25}$+y=0 | B. | x-y=0或$\frac{x}{25}$+y=0 | C. | x+y=0或$\frac{x}{25}$-y=0 | D. | x-y=0或$\frac{x}{25}$-y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{7}$ | B. | $\frac{{2\sqrt{7}}}{7}$ | C. | $\frac{{\sqrt{7}}}{14}$ | D. | $\frac{{5\sqrt{7}}}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值0,最大值9 | B. | 最小值2,最大值9 | ||
| C. | 最小值3,最大值10 | D. | 最小值2,最大值10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com