精英家教网 > 高中数学 > 题目详情
14.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一点P,与坐标原点O,右焦点F2构成正三角形,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

分析 根据正三角形的性质得到三角形F1PF2为直角三角形,利用双曲线离心率的定义进行求解即可.

解答 解:∵P,与坐标原点O、右焦点F2构成正三角形,
∴连接PF1,则三角形F1PF2为直角三角形,
则PF2=c,PF1=$\sqrt{3}$c,
∵PF1-PF2=2a,
∴($\sqrt{3}$-1)c=2a,
则e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}+1$,
故选:C.

点评 本题主要考查双曲线离心率的计算,根据直角三角形的性质建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=(2x-x2)ex,则函数f(x)的极大值与极小值之积为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.曲线C:f(x)=x3-2x2-x+1,点P(1,0),求过点P的切线l与C围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax2+1的定义域为R,其导函数为f′(x).
(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若a=1,曲线y=f(x)在x=0处的切线为直线l,求直线l与函数g(x)=f′(x)+2x及直线x=0、x=1围成的封闭区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲线f(x)=ex在点(0,1)处的切线方程为2mx-ny+1=0,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.运行如图的程序,输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是2,则四棱锥B-ECDF的体积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系中,已知双曲线的中心在原点,焦点在x轴上,实轴长为8,离心率为$\frac{5}{4}$,则它的渐近线的方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=±$\frac{9}{16}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e=$\frac{1}{2}$,P为椭圆C上一个动点,△PF1F2面积的最大值为$\sqrt{3}$,抛物线E:y2=2px(p>0)与椭圆C有共同的焦点.
(1)求椭圆C和抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求证:直线AB必过定点,并求出定点M的坐标;
②过点M作AB的垂线与抛物线交于G、H两点,求四边形AGBH面积的最小值.

查看答案和解析>>

同步练习册答案