精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e=$\frac{1}{2}$,P为椭圆C上一个动点,△PF1F2面积的最大值为$\sqrt{3}$,抛物线E:y2=2px(p>0)与椭圆C有共同的焦点.
(1)求椭圆C和抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求证:直线AB必过定点,并求出定点M的坐标;
②过点M作AB的垂线与抛物线交于G、H两点,求四边形AGBH面积的最小值.

分析 (1)当P为椭圆的上下顶点时,△PF1F2面积的最大值,利用面积公式、离心率公式及a2=b2+c2,联立解出即可得出a、b和c的值,求得椭圆方程,由$\frac{p}{2}$=c,求得p的值,即可求得抛物线方程;
(2)设出直线方程和A、B点坐标,并将直线方程代入椭圆方程,整理得到关于y的一元二次方程,利用韦达定理求得y1+y2和y1•y1关系,$\overrightarrow{OA}$•$\overrightarrow{OB}$=5,求得t=5,即可证明直线AB必过定点(5,0),设G、H的坐标,分别表示出丨AB丨和丨GH丨,根据四边形AGBH面积S=$\frac{1}{2}$丨AB丨•丨GH丨,整理关于x的函数,利用函数单调性求得S的最小值.

解答 解:(1)设F1(-c,0),F2(c,0),由题意得:
$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{2}(2c)×b=\sqrt{3}}\end{array}\right.$,解得:a=2,b=$\sqrt{3}$,c=1,
所以椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.(2分)
所以$\frac{p}{2}=1$,得:p=2.
抛物线E的方程为y2=4x.(3分)
(2)①证明:设直线AB的方程为x=my+t,A($\frac{{y}_{1}^{2}}{4}$,y1),B($\frac{{y}_{2}^{2}}{4}$,y2),y1•y1<0,
联立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=my+t}\end{array}\right.$得:y2-4my-4t=0,
由韦达定理可知y1+y2=4m,y1•y1=-4t.(5分)
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.,得$\frac{({y}_{1}{y}_{2})^{2}}{16}+{y}_{1}{y}_{2}=-5$,
整理得t2-4t-5=0,解得t=-1或5,
∵y1•y1<0,
∴t=5,
∴直线AB过定点M的坐标为(5,0).(7分)
②由①得丨AB丨=$\sqrt{1+{m}^{2}}$,丨y1-y1丨=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+80}$=4$\sqrt{1+{m}^{2}}$•$\sqrt{{m}^{2}+5}$.(9分)
设G(x3,y3)、H(x4,y4),同理得:丨GH丨=$\sqrt{1+(-\frac{1}{m})^{2}}$丨y3-y4丨=4$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{1}{{m}^{2}}+5}$.(10分)
则四边形AGBH的面积S=$\frac{1}{2}$丨AB丨•丨GH丨=8$\sqrt{1+{m}^{2}}$•$\sqrt{{m}^{2}+5}$•$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{1}{{m}^{2}}+5}$. 
=8$\sqrt{[2+({m}^{2}+\frac{1}{{m}^{2}})]•[26+5({m}^{2}+\frac{1}{{m}^{2}})]}$,(11分)
令${m}^{2}+\frac{1}{{m}^{2}}$=μ(μ≥2),
则S=8$\sqrt{(2+μ)(26+5μ)}$=8$\sqrt{5{μ}^{2}+36μ+52}$,
∴S关于μ的增函数.故Smin=96,当且仅当m=±1时取得最小值96.(12分)

点评 本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、四边形形面积计算公式、向量数量积运算性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一点P,与坐标原点O,右焦点F2构成正三角形,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是$\frac{1}{25}$,则cos2θ-sinθ2+2=(  )
A.$\frac{57}{25}$B.$\frac{24}{25}$C.-$\frac{57}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法错误的是(  )
A.在△ABC中,a>b是sinA>sinB的充要条件
B.命题:“在锐角△ABC中,sinA>cosB”为真命题
C.若p:?x≥0,x2-x+1>0,则¬p:?x<0,x2-x+1≤0
D.已知命题p:?φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:?x∈R,cos2x+4sinx-3<0,则“p∧(¬q)”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,已知直线l:x+y+a=0,与点A(0,2),若直线l上存在点M满足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O为原点),则实数a的取值范围是(  )
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦点分别为F1,F2,若存在k,使直线y=k(x-1)与双曲线的右支交于P,Q两点,且△PF1Q的周长为8,则双曲线的斜率为正的渐近线的倾斜角的取值范围是(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD是菱形,侧棱PD⊥底面ABCD,∠BCD=60°.
(I)若点F,E分别在线段AP,BC上,AF=2FP,BE=2EC.求证:EF∥平面PDC;
(Ⅱ)问在线段AB上,是否存在点Q,使得平面PAB⊥平面PDQ,若存在,求出点Q的位置;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等比数列{an}中,若a3,a7是方程x2-5x+2=0的两根,则a5的值是(  )
A.$\sqrt{2}$B.±$\sqrt{2}$C.-$\sqrt{2}$D.±2

查看答案和解析>>

同步练习册答案