精英家教网 > 高中数学 > 题目详情
16.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦点分别为F1,F2,若存在k,使直线y=k(x-1)与双曲线的右支交于P,Q两点,且△PF1Q的周长为8,则双曲线的斜率为正的渐近线的倾斜角的取值范围是(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

分析 根据直线和双曲线的位置关系,结合双曲线的定义建立不等式关系进行求解即可.

解答 解:直线y=k(x-1)经过双曲线的右焦点,∴△PF1Q的周长为4a+2|PQ|,
∵$|{PQ}|>\frac{{2(1-{a^2})}}{a}$,∴$4a+2|{PQ}|>4a+\frac{{4(1-{a^2})}}{a}=\frac{4}{a}$,即:$\frac{4}{a}<8$,
又$\left\{\begin{array}{l}a>0\\ 1-{a^2}>0\end{array}\right.$解得0<a<1,∴$\frac{1}{2}<a<1$,
双曲线的斜率为正的渐近线的方程为:$y=\frac{{\sqrt{1-{a^2}}}}{a}x$,
∵$\frac{1}{2}<a<1∴\frac{{\sqrt{1-{a^2}}}}{a}=\sqrt{\frac{{1-{a^2}}}{a^2}}=\sqrt{\frac{1}{a^2}-1}∈(0,\sqrt{3})$,
从而,此渐近线的倾斜角的取值范围为$(0,\frac{π}{3})$.
故选:D.

点评 本题主要考查双曲线性质的应用,根据直线和双曲线的位置关系建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是2,则四棱锥B-ECDF的体积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrow{d}$,$\overrightarrow{AE}$=$\overrightarrow{e}$,则$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$-$\overrightarrow{e}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e=$\frac{1}{2}$,P为椭圆C上一个动点,△PF1F2面积的最大值为$\sqrt{3}$,抛物线E:y2=2px(p>0)与椭圆C有共同的焦点.
(1)求椭圆C和抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求证:直线AB必过定点,并求出定点M的坐标;
②过点M作AB的垂线与抛物线交于G、H两点,求四边形AGBH面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈R,若对x≥0,均为(x+1)|x-a|≥ax-2成立,则实数a的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,B1C=2,∠ABB1=60°.
(1)证明:AB1⊥平面ABC.
(2)求AC1与平面BCB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i是虚数单位,若复数z=2i-$\frac{5}{2-i}$,则|z|的值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个盒子里装有5张卡片,其中有红色卡片3张,编号分别为1,2,3;白色卡片2张,编号分别为2,3.
从盒子中任取2张卡片(假设取到任何一张卡片的可能性相同).
(1)求取出的2张卡片中,含有编号为3的卡片的概率.
(2)在取出的2张卡片中,红色卡片编号的最大值设为X,求X=3的概率.
(3)求取出的2张卡片编号差的绝对值为1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2tan(x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{5π}{12}$]的值域是(  )
A.[-2,2]B.[-1,1]C.[-2$\sqrt{3}$,2]D.[-$\sqrt{3}$,1]

查看答案和解析>>

同步练习册答案