精英家教网 > 高中数学 > 题目详情
1.如图,三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,B1C=2,∠ABB1=60°.
(1)证明:AB1⊥平面ABC.
(2)求AC1与平面BCB1所成角的正弦值.

分析 (1)连结AB1,在△ABB1中,利用余弦定理,求出AB1=$\sqrt{3}$,利用勾股定理证明AB1⊥AB,AB1⊥AC,即可证明AB⊥平面ABC.
(2)以A为原点,以$\overrightarrow{A{B}_{1}}$,$\overrightarrow{AC}$,$\overrightarrow{A{B}_{1}}$的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系,求出平面BCB1的法向量,平面BCB1的一个法向量,利用向量的数量积求解AC1与平面BCB1所成角的正弦值即可.

解答 解:(1)连结AB1,在△ABB1中,
AB=1.BB1=2,∠ABB1=60°,
由余弦定理得,
AB12=AB2+BB12-2AB•BB1cos∠ABB1=3,

∴AB1=$\sqrt{3}$,…(2分)
∴BB12=AB2+AB12
∴AB1⊥AB.              …(3分)
∵AB1=$\sqrt{3}$,AB=AC=1,B1C=2,
∴B1C2=AB12+AC2,∴AB1⊥AC.(5分)
所以AB⊥平面ABC(6分)
(2)如图,以A为原点,以$\overrightarrow{A{B}_{1}}$,$\overrightarrow{AC}$,$\overrightarrow{A{B}_{1}}$的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,0),B1(0,0,$\sqrt{3}$),B(1,0,0),C(0,1,0),

∴$\overrightarrow{B{B}_{1}}$=(-1,0,-$\sqrt{3}$),$\overrightarrow{BC}$=(-1,1,0).
设平面BCB1的法向量$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{B{B}_{1}}•\overrightarrow{n}=0}\\{\overrightarrow{BC}•\overrightarrow{n}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-x+\sqrt{3}z=0}\\{-x+y=0}\end{array}\right.$,令z=1,得x=y=$\sqrt{3}$.
∴平面BCB1的一个法向量为$\overrightarrow{n}$=($\sqrt{3}$,$\sqrt{3}$,1).…(9分)
∵$\overrightarrow{A{C}_{1}}=\overrightarrow{AC}+\overrightarrow{C{C}_{1}}$=$\overrightarrow{AC}$$+\overrightarrow{B{B}_{1}}$=(-1,1,$\sqrt{3}$)…(10分)
∴cos$<\overrightarrow{A{C}_{1}},\overrightarrow{n}>$=$\frac{\overrightarrow{A{C}_{1}}•\overrightarrow{n}}{|\overrightarrow{A{C}_{1}}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{5}×\sqrt{7}}$=$\frac{\sqrt{105}}{35}$        ….…(11分)
∴AC1与平面BCB1所成角的正弦值为:$\frac{\sqrt{105}}{35}$.(12分)

点评 本题考查直线与平面垂直的判定定理的应用,直线与平面市场价的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.用反证法证明命题“三角形的内角中最多有一个内角是钝角”时应先假设(  )
A.没有一个内角是钝角B.至少有一个内角是钝角
C.至少有两个内角是锐角D.至少有两个内角是钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法错误的是(  )
A.在△ABC中,a>b是sinA>sinB的充要条件
B.命题:“在锐角△ABC中,sinA>cosB”为真命题
C.若p:?x≥0,x2-x+1>0,则¬p:?x<0,x2-x+1≤0
D.已知命题p:?φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:?x∈R,cos2x+4sinx-3<0,则“p∧(¬q)”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{{1-{a^2}}}$=1(a>0)的左右焦点分别为F1,F2,若存在k,使直线y=k(x-1)与双曲线的右支交于P,Q两点,且△PF1Q的周长为8,则双曲线的斜率为正的渐近线的倾斜角的取值范围是(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.($\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{6}$)D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设F1、F2分别是双曲线C:$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的左右焦点,点P在双曲线C的右支上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,则|$\overrightarrow{P{F_1}}$+$\overrightarrow{P{F_2}|}$=(  )
A.4B.6C.$2\sqrt{14}$D.$4\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD是菱形,侧棱PD⊥底面ABCD,∠BCD=60°.
(I)若点F,E分别在线段AP,BC上,AF=2FP,BE=2EC.求证:EF∥平面PDC;
(Ⅱ)问在线段AB上,是否存在点Q,使得平面PAB⊥平面PDQ,若存在,求出点Q的位置;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,P为上双曲线右支上一点,线段F2P的垂直平分线过坐标原点O,若双曲线的离心率为$\sqrt{5}$,则$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“存在x∈[0,2],x2-x-a≤0为真命题”的一个充分不必要条件是(  )
A.a≤0B.a≥-1C.a≥-$\frac{1}{4}$D.a≥3

查看答案和解析>>

同步练习册答案