精英家教网 > 高中数学 > 题目详情
13.如图,四棱锥P-ABCD的底面ABCD是菱形,侧棱PD⊥底面ABCD,∠BCD=60°.
(I)若点F,E分别在线段AP,BC上,AF=2FP,BE=2EC.求证:EF∥平面PDC;
(Ⅱ)问在线段AB上,是否存在点Q,使得平面PAB⊥平面PDQ,若存在,求出点Q的位置;否则,说明理由.

分析 (1)在AD上取点G,使AG=2DG,连结EG、FG,推导出平面EFG∥平面CPD,由此能证明EF∥平面PDC.
(2)取AB中点Q,连结DQ,PQ,推导出平面PDC⊥平面PDQ,从而在线段AB上,不存在点Q,使得平面PAB⊥平面PDQ.

解答 证明:(1)在AD取点G,使AG=2DG,连结EG、FG
∵F,E分别在线段AP,BC上,AF=2FP,BE=2EC,
∴FG∥PD,EG∥CD,
∵FG∩EG=G,PD∩CD=D,
FG、EG?平面EGF,PD、DC?平面PDC,
∴平面EFG∥平面CPD,
∵EF?平面EFG,∴EF∥平面PDC.
(2)在线段AB上,不存在点Q,使得平面PAB⊥平面PDQ.
理由如下:
取AB中点Q,连结DQ,PQ,
∵四棱锥P-ABCD的底面ABCD是菱形,侧棱PD⊥底面ABCD,∠BCD=60°,
∴DQ⊥CD,DQ⊥AB,DQ⊥PD,
∵PD∩CD=D,∴DQ⊥平面PDC,
∵DQ?平面PDQ,∴平面PDC⊥平面PDQ,
∵PAB与平面PDC相交,
∴在线段AB上,不存在点Q,使得平面PAB⊥平面PDQ.

点评 本题考查线面平行的证明,查满足面面垂直的点是否存在的判断与求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系中,已知双曲线的中心在原点,焦点在x轴上,实轴长为8,离心率为$\frac{5}{4}$,则它的渐近线的方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=±$\frac{9}{16}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e=$\frac{1}{2}$,P为椭圆C上一个动点,△PF1F2面积的最大值为$\sqrt{3}$,抛物线E:y2=2px(p>0)与椭圆C有共同的焦点.
(1)求椭圆C和抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求证:直线AB必过定点,并求出定点M的坐标;
②过点M作AB的垂线与抛物线交于G、H两点,求四边形AGBH面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,B1C=2,∠ABB1=60°.
(1)证明:AB1⊥平面ABC.
(2)求AC1与平面BCB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i是虚数单位,若复数z=2i-$\frac{5}{2-i}$,则|z|的值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中的说法正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ使得$\overrightarrow a$=λ$\overrightarrow b$
B.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.“a≠5且b≠-5”是“a+b≠0”的不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个盒子里装有5张卡片,其中有红色卡片3张,编号分别为1,2,3;白色卡片2张,编号分别为2,3.
从盒子中任取2张卡片(假设取到任何一张卡片的可能性相同).
(1)求取出的2张卡片中,含有编号为3的卡片的概率.
(2)在取出的2张卡片中,红色卡片编号的最大值设为X,求X=3的概率.
(3)求取出的2张卡片编号差的绝对值为1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若角α的终边过点P(2cos120°,$\sqrt{2}$sin225°),则cosα=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x),x∈D,若存在常数C,对?x1∈D,?唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=C,则称常数C是函数f(x)在D上的“倍几何平均数”.已知函数f(x)=2-x,x∈[1,3],则f(x)在[1,3]上的“倍几何平均数”是$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案