| A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ使得$\overrightarrow a$=λ$\overrightarrow b$ | |
| B. | 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1” | |
| C. | 命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0” | |
| D. | “a≠5且b≠-5”是“a+b≠0”的不充分也不必要条件 |
分析 A.根据向量关系的等价条件进行判断,
B.根据否命题的定义进行判断.
C.根据含有量词的命题的否定进行判断.
D.根据充分条件和必要条件的定义进行判断.
解答 解:A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ使得$\overrightarrow a$=λ$\overrightarrow b$,当$\overrightarrow b$≠$\overrightarrow{0}$时成立,否则不成立,故A错误,
B.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故B错误,
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故C错误,
D.当a=0,b=0时,满足a≠5且b≠-5,但a+b=0,即充分性不成立,
当a=5,b=0时,满足a+b≠0,但a≠5不成立,即必要性不成立,
即“a≠5且b≠-5”是“a+b≠0”的不充分也不必要条件,故D正确
故选:D
点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,难度不大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | $2\sqrt{14}$ | D. | $4\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com