精英家教网 > 高中数学 > 题目详情
3.已知cos($\frac{π}{2}$+x)=$\frac{4}{5}$,x∈(-$\frac{π}{2}$,0),求$\frac{{sin2x-2{{sin}^2}x}}{1+tanx}$的值.

分析 利用同角三角函数基本关系式求解正弦函数以及余弦函数,正切函数的值,化简所求表达式求解即可.

解答 解:∵$x∈(-\frac{π}{2},0)$,$cos(\frac{π}{2}+x)=\frac{4}{5}$,∴$sinx=-\frac{4}{5},cosx=\frac{3}{5},tanx=-\frac{4}{3}$,
∴$\frac{{sin2x-2{{sin}^2}x}}{1+tanx}=\frac{{2sinxcosx-2{{sin}^2}x}}{{1+\frac{sinx}{cosx}}}=\frac{2sinxcosx(cosx-sinx)}{cosx+sinx}=\frac{168}{25}$.

点评 本题考查三角函数的化简求值,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若直线ax+2y+1=0与直线x-y-2=0互相垂直,那么a的值等于(  )
A.-$\frac{1}{3}$B.2C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中的假命题为(  )
A.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的必要不充分条件
B.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p
C.要得到函数f(x)=cos(2x+$\frac{π}{3}}$)的图象,只需将函数g(x)=sin(2x+$\frac{π}{3}}$)的图象向左平移$\frac{π}{4}$个单位长度
D.?x∈(0,$\frac{π}{2}$),x<sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a<0,b<0)的右焦点为F,右顶点为A,过F作AF的垂线与双线交于B,C两点,过B,C分别作AC,AB的垂线交于D,若D到直线BC的距离不大于a+c,则该双曲线的离心率的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中的说法正确的是(  )
A.若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ使得$\overrightarrow a$=λ$\overrightarrow b$
B.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.“a≠5且b≠-5”是“a+b≠0”的不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若k≠0,n是大于1的自然数,二项式(1+$\frac{x}{k}$)n的展开式为a0+a1x+a2x2+a3x3+a4x4…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则${∫}_{-1}^{k}$x2dx的值为(  )
A.$\frac{28}{3}$B.$\frac{26}{3}$C.28D.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N*),则如图中第10行所有数的和为2046.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线f(x)=$\sqrt{2x-4}$在点(4,f(4))处的切线方程为x-2y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知圆C与y轴相切,圆心在射线l1:x-3y=0(x≥0)上,且被直线l2:y=x截得的弦长为2$\sqrt{7}$.
(1)求此圆的方程.
(2)已知O(0,0),A(0,3),圆上是否存在点M,使得|MA|=2|MO|,若存在,指出有几个点M,并给出理由,若不存在点M,也请说明理由.

查看答案和解析>>

同步练习册答案