分析 由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AB得$\frac{\frac{{b}^{2}}{a}}{c-x}•\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直线BC的距离不大于a+c,即可得出结论.
解答 解:由题意,A(a,0),B(c,$\frac{{b}^{2}}{a}$),C(c,-$\frac{{b}^{2}}{a}$),由双曲线的对称性知D在x轴上,
设D(x,0),则由BD⊥AC得-$\frac{\frac{{b}^{2}}{a}}{c-x}•\frac{\frac{{b}^{2}}{a}}{c-a}$=-1,
∴c-x=-$\frac{{b}^{4}}{{a}^{2}(a-c)}$,
∵D到直线BC的距离不大于a+c,
∴c-x=|-$\frac{{b}^{4}}{{a}^{2}(a-c)}$|≤a+c,
∴$\frac{{b}^{4}}{{a}^{2}}$≤c2-a2=b2,
∴0<$\frac{b}{a}$≤1,
∵e=$\sqrt{1+(\frac{b}{a})^{2}}$,
∴1<e≤$\sqrt{2}$
∴双曲线的离心率的取值范围是(1,$\sqrt{2}$].
故答案为:(1,$\sqrt{2}$]
点评 本题主要考查双曲线离心率的计算,根据条件求出交点D的坐标是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | $2\sqrt{14}$ | D. | $4\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com