精英家教网 > 高中数学 > 题目详情
20.求曲线y=lnx在点M(e,1)处的切线的斜率和切线的方程.

分析 求出曲线的导函数,把切点的横坐标e代入即可求出切线的斜率,然后根据斜率和切点坐标写出切线方程即可.

解答 解:y′=$\frac{1}{x}$,切点为M(e,1),
则切线的斜率k=$\frac{1}{e}$,
切线方程为:y-1=$\frac{1}{e}$(x-e)化简得:x-ey=0.

点评 本题考查了利用导数研究过曲线上某点的切线方程,会根据斜率和切点写出切线方程.过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a<0,b<0)的右焦点为F,右顶点为A,过F作AF的垂线与双线交于B,C两点,过B,C分别作AC,AB的垂线交于D,若D到直线BC的距离不大于a+c,则该双曲线的离心率的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若k≠0,n是大于1的自然数,二项式(1+$\frac{x}{k}$)n的展开式为a0+a1x+a2x2+a3x3+a4x4…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则${∫}_{-1}^{k}$x2dx的值为(  )
A.$\frac{28}{3}$B.$\frac{26}{3}$C.28D.26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足a1=1,a2=$\frac{1}{2}$,且an+2=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$(n∈N*),则如图中第10行所有数的和为2046.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)03-30
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线f(x)=$\sqrt{2x-4}$在点(4,f(4))处的切线方程为x-2y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x=$\frac{π}{12}$时,f(x)取得最大值3;当x=$\frac{7π}{12}$时,f(x)取得最小值-3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.生产A、B两种元件,其质量按测试指标划分为:指示大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测.检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
元件A81240328
元件B71840296
(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.求生产5件元件B所获得的利润不少于280元的概率.

查看答案和解析>>

同步练习册答案