精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x=$\frac{π}{12}$时,f(x)取得最大值3;当x=$\frac{7π}{12}$时,f(x)取得最小值-3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

分析 (1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用正弦函数的减区间求得函数f(x)的单调递减区间.

解答 解:(1)∵函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,
当x=$\frac{π}{12}$时,f(x)取得最大值3;当x=$\frac{7π}{12}$时,f(x)取得最小值-3,故A=3,
$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2,再利用五点法作图可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,
∴f(x)=3sin(2x+$\frac{π}{3}$).
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得 kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的减区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.双曲线C:x2-$\frac{{y}^{2}}{3}$=1的顶点到渐近线的距离与焦点到渐近线的距离之比为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求曲线y=lnx在点M(e,1)处的切线的斜率和切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),则a2018=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.-225°是第(  )象限角.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直角坐标平面内A、B两点满足:①点A、B都在函数f(x)的图象上;②点A、B关于原点对称,则点对(A,B)是函数y=f(x)的一个“姊妹点对”,点对(A,B)与(B,A)可看作同一个“姊妹点对”.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{|x-1|+b,x≥0}\\{\;}\end{array}\right.$,若f(x)的“姊妹点对”有两个,则b的范围为(  )
A.-1<b≤1B.-1≤b<1C.-1≤b≤1D.-1<b<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图给出了一个程序框图,其作用是输入x的值,输出相应的y值,若要使输入的x值与输出的y值相等,则这样的x值组成的集合为{0,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=x2(x-3)的单调区间为单调递增区间为(-∞,0),(1,+∞),单调递减区间为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.两条直线和一个平面所成的角相等,则这两条直线一定平行吗?

查看答案和解析>>

同步练习册答案