精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.

)求分公司一年的利润(万元)与每件产品的售价的函数关系式;

)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值

【答案】

最大值(万元).

【解析】解:()分公司一年的利润(万元)与售价的函数关系式为:

(不合题意,舍去).

两侧的值由正变负.

所以(1)当时,

(2)当时,

所以

答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为元时,分公司一年的利润最大,最大值(万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:

当a为任意实数时,直线(a﹣1)x﹣y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是

已知双曲线的右焦点为(5,0),一条渐近线方程为2x﹣y=0,则双曲线的标准方程是

抛物线的准线方程为.

已知双曲线,其离心率e(1,2),则m的取值范围是(﹣12,0).

其中正确命题的序号是___________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 ,过点的直线的参数方程为为参数),交于两点

(1) 求的直角坐标方程和的普通方程;

(2) 若,,成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2cosxsinxcosx.

1)求函数fx)的最小正周期及单调递减区间:

2)将fx)的图象向左平移个单位后得到函数gx)的图象,若方程gx)=m在区间[0]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,离心率为.

1求椭圆的方程;

2 是过点且互相垂直的两条直线,其中交圆 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点为坐标原点,焦点轴的正半轴上,点是抛物线上的一点,以为圆心,2为半径的圆与轴相切,切点为.

(I)求抛物线的标准方程:

(Ⅱ)设直线轴上的截距为6,且与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:

附:的观测值

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求不等式的解集;

2若关于x的不等式有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正确结论是(

A. 99%以上的把握认为“爱好该项运动与性别无关

B. 99%以上的把握认为“爱好该项运动与性别有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案