精英家教网 > 高中数学 > 题目详情

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正确结论是(

A. 99%以上的把握认为“爱好该项运动与性别无关

B. 99%以上的把握认为“爱好该项运动与性别有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”

【答案】B

【解析】

,结合临界值表,即可直接得出结果.

,可得有99%以上的把握认为“爱好该项运动与性别有关”.故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在长方形中,的中点,为线段上一动点.现将沿折起,形成四棱锥.

(1)若重合,且(如图2).证明:平面

(2)若不与重合,且平面平面 (如图3),设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质量监督局检测某种产品的三个质量指标,用综合指标核定该产品的等级.若,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

(1)利用上表提供的样本数据估计该批产品的一等品率;

(2)在该样品的一等品中,随机抽取2件产品,设事件为“在取出的2件产品中,每件产品的综合指标均满足”,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

1)当时,求在区间上的最大值;

2)设函数在区间上的最大值,求的解析式;

3)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点为曲线上任意一点且满足.

(1)求曲线的方程;

(2)设曲线轴交于两点,点是曲线上异于的任意一点,直线分别交直线于点.求证:以为直线的圆轴交于定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点为曲线上任意一点且满足.

(1)求曲线的方程;

(2)设曲线轴交于两点,点是曲线上异于的任意一点,直线分别交直线于点.试问在轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,点是圆上任意一点,线段的中垂线与交于点.

(Ⅰ)求点的轨迹的方程.

(Ⅱ)斜率不为0的动直线过点且与轨迹交于两点,为坐标原点.是否存在常数,使得为定值?若存在,求出这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一微商店对某种产品每天的销售量(件)进行为期一个月的数据统计分析,并得出了该月销售量的直方图(一个月按30天计算)如图所示.假设用直方图中所得的频率来估计相应事件发生的概率.

(1)求频率分布直方图中的值;

(2)求日销量的平均值(同一组中的数据用该组区间的中点值作代表);

(3)若微商在一天的销售量超过25件(包括25件),则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一几何体的平面展开图如图所示,其中四边形为正方形,分别为的中点,在此几何体中,给出的下面结论中正确的有( )

A. 直线与直线异面 B. 直线与直线异面

C. 直线平面 D. 直线平面

查看答案和解析>>

同步练习册答案