| A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
分析 由题意可得$\frac{y}{\sqrt{x}}$+$\frac{x}{\sqrt{y}}$=$\frac{(\sqrt{y})^{3}+(\sqrt{x})^{3}}{\sqrt{xy}}$=$\frac{1}{2}$[$(\sqrt{y})^{3}$+$(\sqrt{x})^{3}$]≥$\frac{1}{2}$•2$\sqrt{(\sqrt{y})^{3}(\sqrt{x})^{3}}$=2$\sqrt{2}$,由等号成立的条件可得.
解答 解:∵x,y是正数,且xy=4,
∴$\frac{y}{\sqrt{x}}$+$\frac{x}{\sqrt{y}}$=$\frac{(\sqrt{y})^{3}+(\sqrt{x})^{3}}{\sqrt{xy}}$
=$\frac{1}{2}$[$(\sqrt{y})^{3}$+$(\sqrt{x})^{3}$]≥$\frac{1}{2}$•2$\sqrt{(\sqrt{y})^{3}(\sqrt{x})^{3}}$
=$\sqrt{(\sqrt{xy})^{3}}$=2$\sqrt{2}$
当且仅当x=y=2时取等号,
故选:B.
点评 本题考查基本不等式,涉及等号成立的条件,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | an=2n+1 | B. | an=2n-1 | C. | an=2n-3 | D. | an=2n+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com