精英家教网 > 高中数学 > 题目详情

已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为数学公式
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

解:(Ⅰ)由题意可设椭圆的标准方程为:+=1,(a>b>0)…(1分)
则由长轴长等于4,即2a=4,所以a=2.…(2分)
又离心率为,所以c=,…(3分)
所以b2=a2-c2=2…(4分)
所求椭圆C的标准方程为…(5分)
(Ⅱ)假设存在这样的直线l:y=kx+m,设M(x1,y1),N(x2,y2),MN的中点为F(x0,y0),
因为|ME|=|NE|,所以MN⊥EF,所以…①
(i)k=0,显然直线y=m(-<m<)符合题意;
(ii)下面仅考虑k≠0情形:
由直线方程代入椭圆方程,消去y可得(1+2k2)x2+4kmx+2m2-4=0,
由△=16k2m2-4(1+2k2)(2m2-4)>0,可得4k2+2>m2…②…(7分)
则x0==-.…(8分)
代入①式得,解得m=-1-2k2…(11分)
代入②式得4k2+2>-1-2k2,得
综上(i)(ii)可知,存在这样的直线l,其斜率k的取值范围是(-)…(13分)
分析:(Ⅰ)由题意可设椭圆的标准方程,利用长轴长等于4,离心率为,可求a,c的值,从而b2=a2-c2=2,进而可得椭圆C的标准方程;
(Ⅱ)假设存在这样的直线l:y=kx+m,设M(x1,y1),N(x2,y2),MN的中点为F(x0,y0),根据|ME|=|NE|,可得,考虑k=0与k≠0情形,由直线方程代入椭圆方程,确定中点坐标,结合判别式,即可确定斜率k的取值范围.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,联立方程,确定中点坐标是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,
(1)求椭圆的标准方程;
(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省高三最后一次综合测试数学试卷(解析版) 题型:解答题

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(山东) 题型:解答题

(本小题满分12分)已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1.

(I)求椭圆C的标准方程;

(II)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.

 

查看答案和解析>>

同步练习册答案